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1. Introduction 
 In the numerical simulation of inelastic systems, the 

inertia forces generally retain their initial conditions, while 

the parameters governing restoring and damping forces must 

be adjusted based on modeling choices for the elastic-plastic 

behavior to ensure consistent simulated responses. In steel 

structures, inappropriate parameter selection can lead to 

inconsistencies, particularly when individual members1) 

experience rapid stiffness changes due to instabilities such as 

global buckling. Furthermore, under large, repeated 

earthquake excitations, structural members may experience 

local buckling, resulting in sudden degradation in both 

strength and stiffness. 

Fiber elements are commonly used in simulating restoring 

force, as they reliably track the propagation of plasticity and 

effectively reproduce such instabilities. However, the 

accuracy of computational results for highly nonlinear 

behaviors depends heavily on discretization schemes and 

element formulations. Experimental vibration tests have 

shown that the damping ratios in structures remain relatively 

constant across relevant vibration modes2). However, since 

the frequencies of inelastic systems differ from those of elastic 

systems, damping models based on initial stiffness can 

introduce unintended spurious damping forces3).  

This study examines the impact of modeling choices on 

the response of steel structures, with particular emphasis on 

element formulations, damping models, and the calibration of 

material models to accurately capture degradation mechanism 

associated with instabilities. 

 

2. Validation of axially-loaded members 
Axial force predominantly governs the behavior of 

individual members in spatial structures, such as steel 

reticulated domes, with their response closely resembling that 

of steel braces in multi-story braced frames. Building on the 

methodology proposed in the past study4) regarding steel 

braces, this section investigates the force-deformation 

relationship of axially-loaded members in a reticulated dome. 

This focus is particularly relevant as the dome comprises 

members with varying slenderness ratios that have not fully 

validated. 

Segmented beam-column models using force- and 

displacement-based formulation with fiber discretization, 

were selected to account for the inelastic interaction between 

axial force and flexural moment in axially-loaded members. 

These models are based on the Euler Bernoulli theory, which 

assumes that plane sections remain before and after the 

deformation. This modeling approach is commonly referred 

to as the fiber element. Fig. 1 illustrates the numerical scheme 

of the fiber element. For the comparative study between 

simulated and tested responses, the axially-loaded members 

commonly assigned in the reticulated dome as described in 

the following section, were subdivided into 2, 4, 8, 10, and 30 

segments. An initial camber displacement at the midpoint of 

the axially-loaded member was set to 0.1% of the total length 

as suggested by the past study4). The cross section was 

discretized into 16 circumferential and 4 radial fibers. The 

material parameters were utilized from past studies4). The 

Giuffré-Menegotto-Pinto model, implemented as Steel 02 in 

OpenSees, was used for the hysteretic response of material 

incorporating both kinematic and isotropic hardening. 

Fig. 2 presents the comparison of simulated and tested 

response. Since both formulations produced similar results, 

only the response from the displacement-based formulation 

was shown. All subdivision cases successfully captured the 

peak compressive strength of the axially-loaded members 

within an error margin of less than 6%. For a steel brace in 

which overall buckling (𝐾𝐿 𝑟⁄   = 74) occurred before local 

buckling, the numerical model accurately captured the post-

buckling stiffness. However, for a steel brace (𝐾𝐿 𝑟⁄  = 40) in 

which local buckling occurred before or simultaneously with 

overall buckling, the numerical model predicted a stiffer post 

buckling response. The simulated response closely matched 

the tested response within the normalized deformation range 

of δ 𝐿⁄ = −0.5% to 0.5%, where δ is the deformation and 𝐿 
is the total length of steel brace. 

Fig. 1 Numerical scheme of beam – column element 

Fig. 2 Force – Deformation response for displacement-based 

fiber element (a) KL/r = 40; (b) KL/r = 74 
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3. Numerical model of Dome 
This section outlines the scheme for the time history 

analysis of the reticulated dome. As illustrated in Fig. 3, the 

dome was pin-connected to the ground at all supports. A roof 

load of 1.80 kN/m2 was applied as concentrated vertical nodal 

loads at the joints. Masses at all nodes were computed by a 

3D structural analysis and design software STAAD. Nodal 

mass which equals nodal weight divided by gravitational 

acceleration, was introduced in all six degrees of freedom. 

The dimensions of the members in the reticulated dome were 

selected to ensure that all the members remained elastic under 

this roof load. The dome was constructed from round-hollow-

steel-section members with a diameter 120 mm and a 

thickness 4.5 mm, which were rigidly connected to each other. 

The slenderness ratio of the members, taking the joint-to-joint 

distance as their length, ranged from 30 to 62. Yield strength 

𝜎𝑦 of 235 MPa and kinematic hardening of 0.01 times elastic 

modulus were derived from Yang et al.5). The elastic modulus 

was defined as 205 GPa. An initial camber of 0.003 times the 

total length, modelled as a half sine wave, was assigned for 

the members, which met the technical recommendations 

provided by AIJ. The natural period of the dome was 0.31 s at 

mode 1. The dome was designed to ensure stability under the 

dead load, and sustain insignificant and moderate damage 

states when subjected to Taft ground motions at Station 111 in 

the EW direction, with peak accelerations scaled to 0.45 g and 

0.7 g, respectively, based on conventional design6). 

The fiber elements and material properties described in the 

preceding sections were adopted. The axial members were 

subdivided into 2, 4, 8, or 10 fiber elements, using either 

force-based or displacement-based formulation. The 

discretization scheme for the elements remained consistent. 

The Newmark’s method was used with parameters γ = 0.5 
and β = 0.25 . The time increment of 0.001 s was selected 

based on a convergence study. The following three damping 

models were employed: Model 5, [𝑐] = 𝑎0[𝑚] + 𝑎1[𝑘] ; 
Model 6, [𝑐] = 𝑎0[𝑚] + 𝑎1[𝑘

∗] ; and Model 12, [𝑐] =
[𝑚][β0][𝑚] , the naming convention was followed as per 

Fukutomi et al.7). In these equations: β0 is the modal matrix 

defined by Eq. (1) and proposed by Wilson and Penzien8); 𝑎0 
and 𝑎1 are the coefficients for damping matrix. 

 

[β0] =
2ζ𝑛ω𝑛{ϕ𝑛}{ϕ𝑛}

𝑇

𝑀𝑛

 (1) 

 

In the above equation, ω𝑛 is the frequency of mode 𝑛, 𝑀𝑛 

is the modal mass of mode 𝑛. Damping ratio of 0.02 was set 

in modes 1 and 120 for Damping Models 5 and 6. For 

Damping Model 12, damping ratio of 0.02 was used in first 

200 modes.  

For Case A, the same ground motion used by Yang et al.5) 

was adopted, with the Taft ground motions scaled to achieve 

peak ground acceleration (PGA) of 0.5g and 0.7 g. The former 

motion was applied to elastic analysis, this was conducted 

using a higher yield strength of 700 MPa for the material 

property to avoid any tension yielding of the fibers. 

The latter motion, approximately 1.3 times the design 

spectrum of the Japanese Building Standard at safety limit for 

soil type 2, shown in Fig. 4, was used for elastic-plastic 

system. For Case B, a suite of ground motions for the near- 

field set including fault-normal and fault parallel was selected 

based on FEMA P6959). All ground motions were applied in 

the x-direction. 

 

4. Response of Dome subjected to Taft ground 
motion – Case A 

Fig. 5 shows peak vertical displacement for force-based 

model, the simulated elastic displacement histories from 

OpenSees with 8 elements were identical between Damping 

Models 5 and 12 and between both the formulations. It is 

noted that Models 5 and 6 are identical during elastic response. 

To introduce a universal index for examining the influence 

of damping models on damping ratios in inelastic systems, 

Fukutomi et al.7) suggested a representative damping ratio 

ζ𝑟𝑒𝑝 calculated as per Eq. 2-5. 

 

ζ𝑛,𝑒𝑞 =
{ϕ𝑛

∗ }𝑇[𝑐]{ϕ𝑛
∗ }

2 ∙ ω𝑛
∗ ∙ {ϕ𝑛

∗ }𝑇[𝑚]{ϕ𝑛
∗ }

 (2) 

γ𝑛
∗ =

𝑀𝑛
∗

∑ 𝑀𝑛
𝑁
𝑛=1

 (3) 

𝑀𝑛
∗ = (Γ𝑛

∗)2 ∙ 𝑀𝑛 (4) 

Fig. 5 Peak vertical elastic displacement response 

Fig. 4 Response spectrum of input ground motion 

Fig. 3 Schematic of spherical dome 
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ζ𝑟𝑒𝑝 = ∑ζ𝑛,𝑒𝑞

𝑁

𝑛=1

∙ γ𝑛
∗ (5) 

In the above equations, ω𝑛
∗ is the frequency of elastic-plastic 

system updated step by step, γ𝑛
∗  is the ratio of effective 

modal mass to total mass, 𝑀𝑛
∗ is the effective modal mass, 

and Γ𝑛  is the modal participation factor, and N =200 is the 

number of modes considered in the analysis. Fig. 6 presents 

the equivalent damping ratio ζ𝑛,𝑒𝑞   at 15 seconds, as an 

example of plastic system using the displacement-based fiber 

element with 8 segments. For Damping Model 5, the 

equivalent damping ratios of plastic system deviate from 

those of elastic system, ranging from -5.5% to 30% across the 

corresponding modes. This discrepancy arose from damping 

Model 5’s inability to maintain proportionality in the elastic-

plastic system. Conversely, for Damping Model 6, although 

the equivalent damping ratio aligned with the initial-stiffness- 

proportional Rayleigh curve used in Damping Model 5 of 

elastic system, different damping ratios were observed for 

updated frequencies due to the decrease in frequencies 

compared to elastic system. In plastic system, Damping 

Model 5 exhibited equivalent damping ratios that were 0.94 

to 1.46 times higher than those of Damping Model 6. For 

Damping Model 12, the equivalent damping ratio retained at 

the initial value of 0.02 up to mode 460, where the cumulative 

mass participation reached 99%.  

Fig. 6 also illustrate the change in frequency of the 

reticulated dome for modes 1 and 120 in blue dashed line for 

Damping model 6. A general tendency of decrease in 

frequency over the time was observed for all three Damping 

models in both element formulations. Damping Model 5 

exhibited the smallest decrease in frequency compared to 

Damping Models 6 and 12, due to its higher representative 

damping ratio. This tendency corresponds to the result of a 

shake table test for a scaled dome model by Nanhai et al.10) 

that observed a decrease in fundamental frequency with 

increasing PGA, indicating a gradual reduction in structural 

stiffness. However, in the simulated results no significant 

effect on higher modes was observed. Mode 1 was the 

dominant mode in the horizontal x-direction, based on mass 

participation ratio. These results suggest that damping models 

and element formulation have impact on the dynamic 

response of the dominant mode, which plays a more 

substantial role in the global structural response. 

Fig. 7 illustrates the representative damping ratio for both 

formulations in all three directions over the 1 second between 

15 and 16 seconds. This corresponds to the duration when the 

maximum displacement at a node was observed for Damping 

Model 12 with the displacement-based fiber element. For both 

formulations, the representative damping ratio of the inelastic 

system in Damping Model 5 was the largest among all 

damping models in all three directions. The mean 

representative damping ratios for all three directions in 

Damping Model 5 were 1.37 times the target value of 0.02 for 

the force-based formulation and 1.26 times the target value 

for the displacement-based formulation. In contrast, the mean 

representative damping ratios in all three directions for 

Damping Models 6 and 12 were 1.08 times and 0.95 times the 

target value of 0.02, respectively, for both formulations. 

Fig. 8 shows the relative z-displacement (vertical) 

histories of a node at the apex. Since the simulated 

displacement distribution for the selected damping models 

were similar for both formulation at this node, only the results 

for the force-based formulation are presented. Although the 

simulated residual displacement observed after 9.5 seconds 

was underestimated by Damping Model 5 at this node.   

 

Fig. 9 illustrates the contour of vertical displacement at the 

instant when the maximum displacement was observed at a 

specific node. It is noteworthy that the timing of this 

maximum displacement varied depending on the damping 

model and the type of element formulation used. The 

displacement was concentrated at the nodes located in Ring 

No. 2, which corresponds to the circumferential members, as 

depicted in Fig. 9. For the force-based fiber element, Damping 

Models 5 and 12 exhibited symmetrical distributions of 

vertical deformations about the EW direction, with a peak 

displacement of approximately 55 mm, while Damping 

Model 6 demonstrated a higher peak displacement, close to 

Fig. 6 Frequency vs. equivalent damping ratio for 

various damping models for inelastic system 

Fig. 7 Simulated representative damping ratio for force-based 

fiber element (a) x-dir.; (c) y-dir.; (e) z-dir; for displacement-

based fiber element (b) x-dir.; (d) y-dir.; (f) z-dir 
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115 mm, along with negative displacements concentrated in 

the central zone. For the displacement-based fiber element, 

Damping Model 5 showed the lowest peak displacement, 

around 55 mm, accompanied by asymmetry along the NS 

direction. Meanwhile, Damping Models 6 and 12 displayed 

peak displacements of approximately 115 mm, with Damping 

Model 6 also exhibiting central negative displacement.  

Although Damping Model 12 exhibited minimal 

sensitivity to element formulation in terms of deformation 

distribution patterns, the difference in peak displacement 

between the force-based and displacement-based 

formulations was significant. This discrepancy highlights the 

importance of carefully evaluating the choice of element 

formulation when analyzing peak responses. While the 

deformation contours remain relatively consistent, the marked 

difference in peak values can significantly impact overall 

structural performance predictions, particularly under critical 

loading conditions.   

 

5. Response of Dome subjected to Taft ground 
motion – Case B 

This section describes the nonlinear response of 

reticulated dome subjected to the suite of 28 pairs of ground 

motions selected by FEMA-P- 6959).  

Fig. 10 shows the maximum displacement response for 

Case B, for representative nodes and for each damping model. 

The lognormal distribution was used to compute median and 

84th percentile displacement as a representative response of 

the reticulated dome subjected to the suite of ground motions, 

for the maximum displacement experienced. Damping Model 

5, i.e., initial-stiffness-proportional Rayleigh Damping, 

exhibited the smallest displacement response in most cases. 

This may be due to the spurious damping force resulting in 

reduced displacement. Damping Model 6, tangent-stiffness-

proportional Rayleigh Damping frequently showed the largest 

displacement response. Since Damping Model 12, which 

represents modal damping, was considered the most realistic 

among these damping models based on the measurement of 

damping ratios, Damping Model 6 may be overly 

conservative. For fault-normal ground motion, the seismic 

risk as dictated by the study11), associated with Record Serial 

Number 1529 listed in Table A-6C in FEMA-P-6959), was 

found to be lower when analyzed using Damping Model 5 

compared to Damping Models 6 and 12. A similar trend was 

observed in several other cases. 

Fig. 11 illustrates the elongation of all axially-loaded 

members and the ratio of the number of members 

experiencing more than 0.5% contraction to the total number 

of all members, for each case of the reticulated dome 

subjected to the fault normal ground motions. At least 95% of 

Fig. 11 Ratio of the number of members experienced contraction more than 5% to that of the total members, maximum elongation and 

contraction of the members subjected to the fault normal ground motion: (a) Damping model 5; (b) Model 6; (c) Model 12 

䘀椀最⸀................................................................. 

........................................................................................  

 

Fig. 9 The contour of vertical displacement at the instance of 

peak response for force-based fiber element (a) Damping Model 

5; (b) Model 6; (c) Model 12; for displacement-based fiber 

element (d) Model 5; (e) Model 6; (f) Model 12 

 

E W

(b) (c)(a)

(e) (f)(d)

E W

-100 -80 -60 -40 -20 0 20 [mm]

Ring no. 2

Fig. 10 Maximum displacement of reticulated dome 

subjected to fault normal (a) x-dir.; (b) y-dir.; (c) vertical 

dir.; fault parallel (d) x-dir.; (e) y-dir.; (f) vertical dir. 
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the members, deformation in the range -0.5% to 0.5%. The 

validated axially loaded members showed excellent 

agreement within this range. 

 

6. Modelling of local buckling induced 
degradation 

Suzuki and Lignos (2020) introduced a material model 

(SL Model) based on the Unified Voce-Chaboche (UVC) 

uniaxial material model, incorporating both isotropic and 

kinematic hardening to capture degradation in HSS columns. 

The model was later extended to account for local buckling-

induced degradation in round HSS. 

The parameters for the SL Model were calibrated using 

HSS stub columns with diameter-to-thickness ratios ranging 

from 19 to 57. To eliminate variability in the stress–strain 

curve during calibration, the yield ratio was selected between 

1.0 and 1.3. The yield strength ranged between 357 and 454 

MPa. The SL Model was further refined for round HSS braces 

with effective slenderness ratios KL/r ranging from 16 to 103 

through comprehensive cyclic parameter adjustments were 

made to ensure reliable simulation results. Fig. 12 presents the 

effective stress-strain relationship developed by Suzuki and 

Lignos (2020) to capture compression degradation caused by 

local buckling. The cyclic behavior depends on the diameter-

to-thickness ratio D/t, with the material parameter defining 

the cyclic curve following a power law, as given in Eq. 6. 

 

𝐶𝑃 = 𝑎 (
𝐷

𝑡
×
σ𝑦,𝑚

𝐸
)
𝑏

 (6) 

 

Where, 𝐶𝑃 refers to parameter of interest, either σ𝑐,𝑚 σ𝑦,𝑚⁄ , 

ε𝑐,𝑚 ε𝑦,𝑚⁄  , 𝐸𝑑1,𝑚 𝐸⁄  , σ𝑑,𝑚 σ𝑐,𝑚⁄  , and 𝑎  and 𝑏  are empirical 

parameters calibrated by regression coefficients based on a 

specific suite of stud column data. 𝐸𝑑2,𝑚 𝐸⁄  was set to -0.005. 

Fig. 13 compares the loading curve from calibration model 

and the selected stud columns used to calibrate the parameters 

that define softening branch in compression, the parameters 

are chosen to match strain hardening to maximum strength 

and degradation slope over the range of the 𝐷 𝑡⁄   ratio. The 

range of the 𝐷 𝑡⁄   ratios was between 19 and 57, thereby 

covering stocky to slender range. The predicted equation is 

able to capture the post-buckling behavior with sufficient 

accuracy. 

Table 1 provides the calibrated equation for defining 

material properties under monotonic loading. In the post-

buckling phase, the second negative stiffness modulus was set 

to 0.5% of the elastic modulus. The accuracy of the equations 

can be improved by expanding the dataset for stub columns 

with round HSSs or by performing virtual stud column tests 

using finite element software to address the gaps in the data. 

Fig. 14 compares hysteresis response from the SL Model 

that closely aligns with the experimental data, demonstrating 

improved accuracy in capturing post-buckling behavior. In the 

experimental test, local distortion initiated during the 16th 

loading cycle. In the simulation the local buckling was 

delayed until the 14th loading cycle indicated by the red line, 

after which the force deformation continued along the black 

line. significantly improving the accuracy in replicating the 

post-buckling behavior observed in the test. 

The calibrated SL model is being implemented in the 

8-story chevron braced frame designed as per US provision14), 

with lateral loads primarily resisted by the chevron braces and 
simply supported beam to remain elastic, the numerical 

scheme is illustrated in Fig. 15. A pushover analysis of the 

Fig. 13 Normalized stress – strain curve for selected stub 

column test13) 

 

Fig. 12 Effective stress – strain material parameters11) 

 

Fig. 14 Comparison of load-deformation for brace: 

(a) SL Model; and (b) Steel02. 
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braced frame model was conducted to evaluate performance. 

Lateral loads were incrementally applied up to a target roof 

drift of 0.04 radians, The results showed story drifts 

concentrated in the bottom three stories with the Steel02 

material and the bottom four with the SL model, while the 

upper stories remained predominantly elastic, as shown in Fig. 

16. Sudden drops in base shear on higher floors suggest 

instability, in case of SL Model requiring further investigation 

and calibration. 

 

Conclusion 
This study examined numerical modeling choices for 

element formulations and damping models in the dynamic 

response of steel structures. A spherical reticulated dome with 

a 40-m span and 13-m height was used to evaluate the seismic 

performance of spatial structures under various ground 

motions. A deteriorating material model was integrated into 

OpenSees to replicate local buckling-induced degradation in 

steel braces, and this approach was applied to assess the lateral 

resistance of a chevron-braced frame. The main findings are 

as follows: 

1. The choice of modeling parameters, such as force 

formulations and damping models, had minimal influence 

on the elastic response of the reticulated dome. However, 

these choices significantly affected the elastic-plastic 

response, despite the limited plasticity of the system. This 

finding for spatial structures differs from Chopra et al. 

study15), which suggested that damping models had limited 

impact on dynamic responses of multi-story frames with 

the distributed plasticity models. 

2. The average damping ratios for Damping Model 5 in all 

three directions were 1.26 times the target, while Models 6 

and 12 produced ratios nearly identical to the target. 

Displacement responses using Model 6 were 1.1 to 1.2 

times higher than those with Model 12 across the ground 

motions analyzed. Consequently, Model 12 emerged as the 

most reliable choice for spatial structures. 

3. Damping Model 5 was found to potentially yield a more 

unconservative evaluation of damage state for spatial 

structures than Models 6 and 12. Damping Model 12 is 

recommended for the seismic risk analysis to mitigate the 

effects of the spurious damping forces. 

4. The SL Model successfully captured the force–deformation 

behavior of round-HSS braces by calibrating material 

parameters derived from stub column tests. While 

numerical instabilities were observed when the SL Model 

was applied in the static pushover analysis, it effectively 

reproduced the degradation of the lateral resistance in the 

chevron braced frame caused by local buckling. 
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Table 1 Calibrated monotonic parameters for round HSS 

Parameter σc σy⁄   εc εy⁄  𝐸𝑑1 𝐸⁄  σ𝑑 σ𝑐⁄  𝐸𝑑2 

a 0.92 0.37 -0.34 0.061 
-0.005E 

b -0.052 -1.17 0.74 -0.742 

Fig. 16 Comparison of push over curve for 8 story steel 

chevron frames between SL Model and Steel02 
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